某校把一块形状为直角三角形的废地开辟为植物园,如图所示,∠ACB=90°,AC=80m,BC=60m,若线段CD是一条
某校把一块形状为直角三角形的废地开辟为植物园,如图所示,∠ACB=90°,AC=80m,BC=60m,若线段CD是一条水渠,且D点在边AB上,已知水渠的造价为10元/米,...
某校把一块形状为直角三角形的废地开辟为植物园,如图所示,∠ACB=90°,AC=80m,BC=60m,若线段CD是一条水渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?
展开
2个回答
2011-04-05
展开全部
当CD垂直于AB时,CD距离最短,造价最低
三角形ACB为直角三角形
AC=80 BC=60
所以 AB=100
三角形ACB面积=AC*BC/2=AB*CD/2
CD=48
造价=48*10=480
三角形ACB为直角三角形
AC=80 BC=60
所以 AB=100
三角形ACB面积=AC*BC/2=AB*CD/2
CD=48
造价=48*10=480
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询