数列{an}的通项公式an=1/n+1+1/n+2+1/n+3+…+1/2n(n∈N+),则an+1-an=

hndcmx
2011-04-05 · TA获得超过1294个赞
知道小有建树答主
回答量:132
采纳率:0%
帮助的人:152万
展开全部
答案:a(n+1)-an=1/(2n+1)+1/(2n+2) - 1/(n+1)
过程:
因为an=1/(n+1)+1/(n+2)+1/(n+3)+…+1/2n
所以求a(n+1)等于多少只要将(n+1)替代上式的n即可
故:
a(n+1)=1/(n+2)+1/(n+3)+1/(n+4)+…+1/(2(n+1))
=1/(n+2)+1/(n+3)+1/(n+4)+…+1/(2n+2)
即:
an =1/(n+1)+1/(n+2)+1/(n+3)+…+1/2n ①式
a(n+1)= 1/(n+2)+1/(n+3)+…+1/2n+1/(2n+1)+1/(2n+2) ②式
对比①、②式,发现两式对齐的项相等,故:
a(n+1)-an=1/(2n+1)+1/(2n+2) - 1/(n+1)
为所求。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式