数列{an}的通项公式an=1/n+1+1/n+2+1/n+3+…+1/2n(n∈N+),则an+1-an=
展开全部
答案:a(n+1)-an=1/(2n+1)+1/(2n+2) - 1/(n+1)
过程:
因为an=1/(n+1)+1/(n+2)+1/(n+3)+…+1/2n
所以求a(n+1)等于多少只要将(n+1)替代上式的n即可
故:
a(n+1)=1/(n+2)+1/(n+3)+1/(n+4)+…+1/(2(n+1))
=1/(n+2)+1/(n+3)+1/(n+4)+…+1/(2n+2)
即:
an =1/(n+1)+1/(n+2)+1/(n+3)+…+1/2n ①式
a(n+1)= 1/(n+2)+1/(n+3)+…+1/2n+1/(2n+1)+1/(2n+2) ②式
对比①、②式,发现两式对齐的项相等,故:
a(n+1)-an=1/(2n+1)+1/(2n+2) - 1/(n+1)
为所求。
过程:
因为an=1/(n+1)+1/(n+2)+1/(n+3)+…+1/2n
所以求a(n+1)等于多少只要将(n+1)替代上式的n即可
故:
a(n+1)=1/(n+2)+1/(n+3)+1/(n+4)+…+1/(2(n+1))
=1/(n+2)+1/(n+3)+1/(n+4)+…+1/(2n+2)
即:
an =1/(n+1)+1/(n+2)+1/(n+3)+…+1/2n ①式
a(n+1)= 1/(n+2)+1/(n+3)+…+1/2n+1/(2n+1)+1/(2n+2) ②式
对比①、②式,发现两式对齐的项相等,故:
a(n+1)-an=1/(2n+1)+1/(2n+2) - 1/(n+1)
为所求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |