齐次线性方程组有非零解的充分必要条件是什么?

 我来答
教育小百科达人
2021-10-02
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

齐次线性方程组Ax=0有非零解的充分必要条件是A中必有一列向量是其余列向量的线性组合。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数)。

若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。



求解步骤:

1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵

2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束。

3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组。

4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式