证明x→1,x^{[(1/2)-3x]/1-x}=e^(5/2)?
2个回答
展开全部
ans :A
f(0-)
=lim(x->0-) [e^(tanx) -1]/arcsin(ax)
=lim(x->0-) x/(ax)
=1/a
f(0) =0+2=2
f(0-)=f(0)
=> a=1/2
f(1)=1+2=3
f(1+)
=lim(x->1+) blnx/(x-1)
=lim(x->1+) b(x-1)/(x-1)
=b
f(1)=f(1+)
=>
b=3
(a,b)=(1/2, 3)
//
lim(x->1) x^[(a-bx)/(1-x)]
=lim(x->1) x^[(1/2-3x)/(1-x)]
=lim(x->1) e^[(1/2-3x)lnx/(1-x) ]
=lim(x->1) e^[(1/2-3x)ln(1+(x-1))/(1-x) ]
=lim(x->1) e^[(1/2-3x)(x-1)/(1-x) ]
=lim(x->1) e^[-(1/2-3x) ]
=e^[ -(1/2-3) ]
=e^(5/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询