若一个多边形截取一个角后所形成的另一个多边形内角和为2520度则原多边形边数是多少

2007xxbb
2011-04-05 · TA获得超过1836个赞
知道小有建树答主
回答量:67
采纳率:0%
帮助的人:54.7万
展开全部

此题有三种情况:设此多边形边数为n

1、如果截去的角不经过原多边形的顶点,则原多边形截去一个角后的边数为n+1,利用多边形内角和公式可得:(n+1-2)×180°=2520°,,解得:n=15,所以原多边形边数为15.

2、如果截去的角经过原多边形的一个顶点,则原多边形截去一个角后的边数仍为n,利用多边形内角和公式可得:(n-2)×180°=2520°,,解得:n=16,所以原多边形边数为16.

3、如果截去的角经过原多边形的两个顶点,则原多边形截去一个角后的边数为n-1,利用多边形内角和公式可得:(n-1-2)×180°=2520°,,解得:n=17,所以原多边形边数为17.

综上所述:原凸多边形的边数可能为15或16或17.

另注:如果此题给出具体的图形是这三种情况中的某一种,那么答案就是唯一的,如果没给出图形答案就是三个。 下面以五边形为例画出三种情况供你参考:

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式