数学这门学科的特点是什么
展开全部
数学学科的特点
数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显著的特点:高度抽象,逻辑严密,广泛应用。
1.高度抽象性 .
数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式。在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别。数学家关心的只是“五”。
又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物。“点”被看作没有大小的东西,禾长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高的面。实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
2.严密逻辑性 .
数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。任何一门科学,都要应用逻辑工具,都有它严谨的一面。但数学对逻辑的要求不同于其它科学 因为数学的研究对象是具有高度抽象性的数量关系和空间形式,是一种形式化的思想材料。许多数学结果,很难找到具有直观意义的现实原型,往往是在理想情况下进行研究的。如一元二次方程求根公式的得出,两条直线位置关系的确定,无穷小量的得出,等等。数学运算、数学推理、数学证明、数学理论的正确性等,不能像自然科学那样借助于可重复的实验来检验,而只能借助于严密的逻辑方法来实现。
3.广泛应用性 . 数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。我国已故著名数学家华罗庚教授曾指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。 这是对数学应用的广泛性的精辟概括。
数学应用的例证不胜枚举,太阳系九大行星之一的海王星的发现,电磁波的发现,都是 历史上数学应用的光辉范例。
数学的这三个显著特点是互相联系的,数学的高度抽象性,决定了其逻辑的严密性,同时又保证其广泛的应用性。这些特点也深刻地反映了:实践是数学的源泉,实践应用的需要正是学习数学的目的。
数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显著的特点:高度抽象,逻辑严密,广泛应用。
1.高度抽象性 .
数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式。在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别。数学家关心的只是“五”。
又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物。“点”被看作没有大小的东西,禾长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高的面。实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
2.严密逻辑性 .
数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。任何一门科学,都要应用逻辑工具,都有它严谨的一面。但数学对逻辑的要求不同于其它科学 因为数学的研究对象是具有高度抽象性的数量关系和空间形式,是一种形式化的思想材料。许多数学结果,很难找到具有直观意义的现实原型,往往是在理想情况下进行研究的。如一元二次方程求根公式的得出,两条直线位置关系的确定,无穷小量的得出,等等。数学运算、数学推理、数学证明、数学理论的正确性等,不能像自然科学那样借助于可重复的实验来检验,而只能借助于严密的逻辑方法来实现。
3.广泛应用性 . 数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。我国已故著名数学家华罗庚教授曾指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。 这是对数学应用的广泛性的精辟概括。
数学应用的例证不胜枚举,太阳系九大行星之一的海王星的发现,电磁波的发现,都是 历史上数学应用的光辉范例。
数学的这三个显著特点是互相联系的,数学的高度抽象性,决定了其逻辑的严密性,同时又保证其广泛的应用性。这些特点也深刻地反映了:实践是数学的源泉,实践应用的需要正是学习数学的目的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询