一道高数积分题目求解在线等在线采纳
3个回答
展开全部
作万能三角代换:t = tan(x/2)
准备工作:
dt = (1/2)sec^2(x/2)dx = (1/2)(1+t^2)dx ==> dx = 2/(1+t^2) dt
sinx = 2sin(x/2)cos(x/2) = 2tan(x/2)/sec^2(x/2) = 2t/(1+t^2)
cosx = 2cos^2(x/2)-1 = 2/t^2 - 1 = 1/(1+t^2) - 1 = (1-t^2)/(1+t^2)
代入稍化简一下可得:
原积分 = ∫1/(1+t) dt = ln|1+t| + c = ln|tan(x/2)+1| + c
准备工作:
dt = (1/2)sec^2(x/2)dx = (1/2)(1+t^2)dx ==> dx = 2/(1+t^2) dt
sinx = 2sin(x/2)cos(x/2) = 2tan(x/2)/sec^2(x/2) = 2t/(1+t^2)
cosx = 2cos^2(x/2)-1 = 2/t^2 - 1 = 1/(1+t^2) - 1 = (1-t^2)/(1+t^2)
代入稍化简一下可得:
原积分 = ∫1/(1+t) dt = ln|1+t| + c = ln|tan(x/2)+1| + c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询