如何求矩阵的秩

lry31383
高粉答主

2011-04-06 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.7亿
展开全部
一般是用行变换化梯形 非零行数就是矩阵的秩

(列变换也可以用, 但行变换足够用了)

还一个方法是求A的最高阶非零子式, 这个太麻烦, 一般用在证明题中.

满意请采纳 有问题就消息我或追问
仄荚喉舌c6
2011-04-05 · 超过12用户采纳过TA的回答
知道答主
回答量:104
采纳率:0%
帮助的人:0
展开全部
线性代数的是吧?
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。

定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
还有就是线性代数的书,我指同济大学的貌似写的很清楚了,看几个例题绝对能懂
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
祝月月华荷香G
2020-06-18 · TA获得超过232个赞
知道答主
回答量:523
采纳率:33%
帮助的人:30.1万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式