已知正数数列{an}满足:2√sn=an+1 (1)求a1,a2,a3,a4 (2)求数列an通项
展开全部
4Sn=(An+1)^2
=>
4S(n-1)=(A(n-1)+1)^2
=>
4An=(An+1)^2-(A(n-1)+1)^2
=>
(A(n-1)+1)^2=(An-1)^2
=>
A(n-1)+1=An-1 or A(n-1)+1=-An+1
=>
A(n-1)+2=An or A(n-1)=-An
正数列
=>
A(n-1)+2=An
=》
等差,d=2
2√sn=an+1
=>
2√a1=a1+1
=>
a1=1
=>
An=1+(n-1)*2=n+1
=>
Bn
=1/((n+1)(n+2))
=1/(n+1)-1/(n+2)
=>
Sn(b)
=1/2-1/3+1/3-1/4+...+1/(n+1)-1/(n+2)
=1/2-1/(n+2)
=>
4S(n-1)=(A(n-1)+1)^2
=>
4An=(An+1)^2-(A(n-1)+1)^2
=>
(A(n-1)+1)^2=(An-1)^2
=>
A(n-1)+1=An-1 or A(n-1)+1=-An+1
=>
A(n-1)+2=An or A(n-1)=-An
正数列
=>
A(n-1)+2=An
=》
等差,d=2
2√sn=an+1
=>
2√a1=a1+1
=>
a1=1
=>
An=1+(n-1)*2=n+1
=>
Bn
=1/((n+1)(n+2))
=1/(n+1)-1/(n+2)
=>
Sn(b)
=1/2-1/3+1/3-1/4+...+1/(n+1)-1/(n+2)
=1/2-1/(n+2)
2011-04-05
展开全部
2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询