
已知椭圆的焦点是F1、F2、P是椭圆上的一个动点.如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )
展开全部
由椭圆定义:椭圆上任意一点到两焦点的在距离之和为定值
|F1P|+|PF2|=2a (设a为横轴)
现在|PQ|=|PF2|
相当于|F1P|+|PQ|=2a
而F1P,PQ同向,则即|F1P+PQ|=|F1Q|=2a
Q即为到点P的距离为定值的点
轨迹为:圆心在椭圆上,半径为2a的圆
|F1P|+|PF2|=2a (设a为横轴)
现在|PQ|=|PF2|
相当于|F1P|+|PQ|=2a
而F1P,PQ同向,则即|F1P+PQ|=|F1Q|=2a
Q即为到点P的距离为定值的点
轨迹为:圆心在椭圆上,半径为2a的圆
追问
我怎么看着F1是圆心哪?? 你看对吗???
2011-04-18
展开全部
轨迹为:圆心在椭圆上,半径为2a的圆
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询