借助一元二次函数图像的直观如何得到一般的求解步骤
1个回答
展开全部
二次函数的图象
y=ax^2+bx+c(a,b,c为常数,a≠0)
一.抛物线的性质
1.抛物线是轴对称图形.对称轴为直线
x = -b/2a.
对称轴与抛物线唯一的交点为抛物线的顶点P.
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2)/4a ].
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上.
3.二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.
|a|越大,则抛物线的开口越小.
4.一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右.
5.常数项c决定抛物线与y轴交点.
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点.
Δ= b^2-4ac=0时,抛物线与x轴有1个交点.
Δ= b^2-4ac<0时,抛物线与x轴没有交点.
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根.
y=ax^2+bx+c(a,b,c为常数,a≠0)
一.抛物线的性质
1.抛物线是轴对称图形.对称轴为直线
x = -b/2a.
对称轴与抛物线唯一的交点为抛物线的顶点P.
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2)/4a ].
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上.
3.二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.
|a|越大,则抛物线的开口越小.
4.一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右.
5.常数项c决定抛物线与y轴交点.
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点.
Δ= b^2-4ac=0时,抛物线与x轴有1个交点.
Δ= b^2-4ac<0时,抛物线与x轴没有交点.
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根.
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询