如图 在rt△abc的面积为20平方厘米,在AB的同侧,分别以AB,BC,AC为直径做三个半圆,求阴影部分的面积
14个回答
展开全部
告诉你个简单的方法:一看这个题,应该会立马想到勾股定理,而且三个边都是未知的;在看所要求的面积,肯定是存在减法;每个圆的半径是对应边的一半,那么其中三个半圆的面积(未知)的表达式中必有相似的系数(π/8),且看图形是两个小圆面积的和减一个大圆面积,圆面积中必有平方项,再根据勾股定理,即可得零,又因为多减掉了一个三角形,再加上一个即可。综合上述,阴影面积是20平方厘米。你看懂了吗?根本不用动笔计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设AC=2x,BC=2y,则以AC为直径的半圆面积为 πx^2/2,
以BC为直径的半圆面积为 πy^2/2, AB=2(根号(x^2+y^2)),
以AB为直径的半圆面积为 π(x^2+y^2)/2
故阴影部分的面积S=πx^2/2 + πy^2/2 - {π(x^2+y^2)/2-20} = 20
即阴影部分面积为 S=20 平方厘米
以BC为直径的半圆面积为 πy^2/2, AB=2(根号(x^2+y^2)),
以AB为直径的半圆面积为 π(x^2+y^2)/2
故阴影部分的面积S=πx^2/2 + πy^2/2 - {π(x^2+y^2)/2-20} = 20
即阴影部分面积为 S=20 平方厘米
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询