为什么实对称矩阵同一特征值的特征向量线性无关?

 我来答
生活小能手145
2021-10-13 · 极简生活,治愈生活。
生活小能手145
采纳数:507 获赞数:23729

向TA提问 私信TA
展开全部

因为n阶对称矩阵必可对角化,对角化的条件就是有n个线性无关的特征向量,因此实对称矩阵特征值的重数和与之对应的线性无关的特征向量的个数相等。

一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。线性变换的主特征向量是最大特征值对应的特征向量。

第一性质:

线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。

特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。

特征值的几何重次是相应特征空间的维数。

有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

黄先生
2024-12-27 广告
北京蓝宝、广州宏控、广州迈拓维矩、广州快捷等。在性价比方面,选择广州迈拓维矩矩阵切换器,性价比较高,6道测试工序,质量有保证。有以下优点:1.所有产品都是模块化设计,方便维护。2.矩阵都有输出长线驱动的设计,即插即用,不需要设置。3.软硬件... 点击进入详情页
本回答由黄先生提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式