复变函数求积分

 我来答
匿名用户
2022-04-07
展开全部
直接用分部积分法求解。原式=∫(1,i)(z-i)d(sinz)=(z-i)sinz丨(z=1,i)-∫(1,i)sinzdz=-(1-i)sini+cosz丨(z=1,i)=-(1-i)sini+cosi-cos1=。
再应用欧拉公式,原式=1/e-cos1+(1/e-e)i/2。
供参考。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式