定积分的运算
1个回答
展开全部
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。分点问题
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距
是相等的。但是必须指出,即使
不相等,积分值仍然相同。
我们假设这些“矩形面积和”
,那么当n→+∞时,
的最大值趋于0,所以所有的
趋于0,所以S仍然趋于积分值。
利用这个规律,在我们了解牛顿-莱布尼兹公式之前,我们便可以对某些函数进行积分。
例如:证明对于函数
有
。
证明:选择等比级数来分点,令公比
且
,
那么“矩形面积和”为
提取
,则有
利用等比级数公式,得到
其中
。
设
, 令
,则
令n增加,则s,q都趋于1,因而N的极限为
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。分点问题
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距
是相等的。但是必须指出,即使
不相等,积分值仍然相同。
我们假设这些“矩形面积和”
,那么当n→+∞时,
的最大值趋于0,所以所有的
趋于0,所以S仍然趋于积分值。
利用这个规律,在我们了解牛顿-莱布尼兹公式之前,我们便可以对某些函数进行积分。
例如:证明对于函数
有
。
证明:选择等比级数来分点,令公比
且
,
那么“矩形面积和”为
提取
,则有
利用等比级数公式,得到
其中
。
设
, 令
,则
令n增加,则s,q都趋于1,因而N的极限为
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询