求矩阵(1 2 3)(2 1 3)(3 3 6)的特征值和特征向量.

 我来答
华源网络
2022-06-05 · TA获得超过5602个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
解: |A-λE| =
1-λ 2 3
2 1-λ 3
3 3 6-λ
r1-r2
-1-λ 1+λ 0
2 1-λ 3
3 3 6-λ
c2+c1
-1-λ 0 0
2 3-λ 3
3 6 6-λ
= (-1-λ)[(3-λ)(6-λ)-18]
= (-1-λ)[λ^2-9λ]
= λ(9-λ)(1+λ)
所以A的特征值为 0, 9, -1
AX = 0 的基础解系为: a1 = (1,1,-1)'
所以,A的属于特征值0的全部特征向量为: c1(1,1,-1)', c1为非零常数.
(A-9E)X = 0 的基础解系为: a2 = (1,1,2)'
所以,A的属于特征值9的全部特征向量为: c2(1,1,2)', c2为非零常数.
(A+E)X = 0 的基础解系为: a3 = (1,-1,0)'
所以,A的属于特征值-1的全部特征向量为: c3(1,-1,0)', c3为非零常数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式