计算二重积分:∫∫D cos(x+y)dxdy,其中D由y=x,y=π,x=0所围成的区域
展开全部
∫∫_D cos(x + y) dσ
= ∫(0→π) dy ∫(0→y) cos(x + y) dx
= ∫(0→π) dy ∫(0→y) cos(x + y) d(x + y)
= ∫(0→π) sin(x + y) |(0→y) dy
= ∫(0→π) [sin(2y) - sin(y)] dy
= cos(y) - (1/2)cos(2y) |(0→π)
= [cos(π) - (1/2)cos(2π)] - [cos(0) - (1/2)cos(0)]
= - 2
= ∫(0→π) dy ∫(0→y) cos(x + y) dx
= ∫(0→π) dy ∫(0→y) cos(x + y) d(x + y)
= ∫(0→π) sin(x + y) |(0→y) dy
= ∫(0→π) [sin(2y) - sin(y)] dy
= cos(y) - (1/2)cos(2y) |(0→π)
= [cos(π) - (1/2)cos(2π)] - [cos(0) - (1/2)cos(0)]
= - 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询