(1)图(a)中有多少个三角形? (2)图(b)中又有多少个三角形?

 我来答
回从凡7561
2022-07-04 · TA获得超过789个赞
知道小有建树答主
回答量:297
采纳率:100%
帮助的人:52.3万
展开全部
(1)图(a)中有6条直线.一般来说,每3条直线能围成一个三角形,但是这3条直线如果相交于同一点,那么,它们就不能围成三角形了.
从6条直线中选3条,有 1 6 ×6×5×4=20.
种选法(见说明),每次选出的3条直线围成一个三角形,但是在图1-70(a)中,每个顶点处有3条直线通过,它们不能围成三角形,因此,共有20-3=17个三角形.

(2)图(b)中有7条直线,从7条直线中选3条,有7×6×5/6=35种选法.每不过同一点的3条直线构成一个三角形.
图(b)中,有2个顶点处有3条直线通过,它们不能构成三角形,还有一个顶点有4条直线通过,因为4条直线中选3条有4种选法,即能构成4个三角形,现在这4个三角形没有了,
所以,图(b)中的三角形个数是35-2-4=29(个).
说明从6条直线中选2条,第一条有6种选法,第二条有5种选法,共有6×5种选法.但是每一种被重复算了一次,例如l 1 l 2 与l 2 l 1 实际上是同一种,所以,不同的选法是6×5÷2=15种.
从6条直线中选3条,第一条有6种选法,第二条有5种选法,第三条有4种选法,共有6×5×4种选法.但是每一种被重复计算了6次,例如,1 1 1 2 1 3 ,1 1 1 3 1 2 ,1 2 1 1 1 3 ,1 2 1 3 1 1 ,1 3 1 1 1 2 ,1 3 1 2 1 1 实际上是同一种,所以,不同的选法应为6×5×4/6=20种.
下面我们利用递推的方法来计算一些图形区域问题.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式