帮忙翻译一下 翻译成中文

Inthepresentpaperwestudyadiffusingparticlethatescapesfromacavitytotheoutsideworldthro... In the present paper we study a diffusing particle that escapes from a cavity to the outside world through a narrow cylindrical tunnel. While earlier studies of the problem1–3 are focused on the mean particle lifetime, which is only the ?rst moment of the distribution, we develop a theory that allows us to derive expressions for the Laplace transforms of the particle lifetime probability density and its survival probability. The former is used to obtain an expression for the mean lifetime that contains the results earlier reported in the literature as special cases, which correspond to different escape scenarios. This is a consequence of the fact that our approach is quite general in the sense that it does not assume any particular scenario. The results obtained in the paper show how the escape kinetics depends on the geometric and trans-port parameters of the system, namely, the cavity volume, the length and radius of the tunnel, and the particle diffusion coef?cients in the tunnel and cavity, which may be different.
The model of a diffusing particle escaping from a cavity through a narrow tunnel has been proposed and used when discussing escape of signaling ions and proteins from den-dritic spines,1–4which are small, micrometer in size protrusions on dendrites. Although there is enormous variability in spine morphology,5the classical dendritic spine consists of a bulbous head connected to the parent dendrite by a narrow neck. It is believed that dendritic spines are important for communication between nerve cells, since the majority of excitatory synapses in the brain are on spines rather than dendrites. Cells use spines as sites where suf?ciently high concentrations of signals can be generated and kept long enough to initiate signaling cascades.1–4 Therefore, the signal lifetime in the spine is an important parameter.
展开
很爱很爱—你
2011-04-07
知道答主
回答量:19
采纳率:0%
帮助的人:0
展开全部
本文研究了一种扩散的粒子逃离了腔向外部世界通过一条狭窄的圆柱隧道。而早期的研究集中在problem1-3的平均粒子一生,这是唯一的那一时刻?具时滞参数之竞争,我们建立了一个理论分布表达式,允许我们为拉氏变换导出的概率密度及其粒子一生生存概率。前者是用来获取一个表达式的结果意味着一生中包含了早期文献的报告作为特殊情况,它对应于不同的逃脱的情况。这是一种后果的事实是,我们的方法很一般,从这个意义来说,它不承担任何特定的场景。本文的结果显示其逃逸动力学取决于几何优越,交通十分参数体系,即,空腔体积、长度和曲率半径的隧道,与粒子扩散系数吗? cients在隧道与腔,这可能是不同的。

扩散模型的粒子逃离了腔通过一条狭窄的隧道已经被提出和应用在讨论逃脱的信令离子和蛋白质的den-dritic棘,1-4which虽小,千分尺在尺寸上的突出物的对接。尽管存在着巨大的变异性的脊柱形态学、这位古典树突脊柱由一个脑袋连接到家长枝以微弱的脖子上。据说树突棘是重要的神经细胞之间的沟通,因为绝大多数的兴奋性突触大脑在刺而不是对接。细胞用刺,因为这些网站在哪里?地见sub高浓度的信号可以生成并保存足够长的时间,因此,信号cascades.1-4启动的信号在脊柱的一生中是一个重要的参数。
聪明雪樱
2011-04-07 · TA获得超过110个赞
知道小有建树答主
回答量:242
采纳率:0%
帮助的人:34.8万
展开全部
本文研究了一种扩散的粒子逃离了腔向外部世界通过一条狭窄的圆柱隧道。而早期的研究集中在problem1-3的平均粒子一生,这是唯一的那一时刻?具时滞参数之竞争,我们建立了一个理论分布表达式,允许我们为拉氏变换导出的概率密度及其粒子一生生存概率。前者是用来获取一个表达式的意思是一生中包含的飞机票
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式