初三上数学期末试卷带答案
鲜花纷纷绽笑颜,捷报翩翩最灿烂。绽在心头芬芳绕,合家共同甜蜜笑。金榜题名无限好,不负十年多辛劳。继续扬帆勤钻研,书写明天新诗篇。祝你九年级数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的初三上数学期末试卷,希望你们喜欢。
初三上数学期末试题
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.点(一1,一2)所在的象限为
A.第一象限 B.第二象限 c.第三象限 D.第四象限
2.反比例函数y=kx的图象生经过点(1,-2),则k的值为
A.-1 B.-2 C.1 D.2
3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的
A.-4 B.0 C.1 D.3
4.在平面直角坐标系中,函数y= -x+1的图象经过
A.第一,二,三象眼 B.第二,三,四象限
C.第一,二,四象限 D.第一,三,四象限
5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为
A.80° B.60° C.50° D.40°
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=
A.1 B.1.5 C.2
7.抛物线y=-3x2-x+4与坐标轴的交点的个数是
A.3 B.2 C.1 D.0
8.在同一平面直角坐标系中,函数y=mx+m与y=-mx (m≠0)的图象可能是
9.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB//x轴,交反比例函数y=-3x的 图象于点B,以AB为边作ABCD,其中C、D在x轴上,则SABCD为
A. 2 B. 3 C. 4 D. 5
10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是
A.相离 B.相切 C.相交 D.以上三种情况都有可能
11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒
12.如图,将抛物线y=(x—1)2的图象位于直线y=4以上的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为
A.43<m </m
第Ⅱ卷(非选择题共84分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的横线上.)
13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_____________
14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为__________
15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C.则∠BAC等于____________度.
16.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为______________
17.如图,已知点A、C在反比例函数y=ax(a>0)的图象上,点B、D在反比例函数y=bx(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________________
18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转m2度:第3次从第2次停止的位置向相同的方向再次旋转m4度;第4次从第3次停止的位置向相同的方向再次旋转m8度……依此类推.例如【2,90】=38,则【2017, 180】=_______________
三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分6分)
(1)计算sin245°+cos30°•tan60°
(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.
20.(本小题满分6分)
如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5.
求AB的长度.
21.(本小题满分6分)
如图,点(3,m)为直线AB上的点.求该点的坐标.
22.(本小题满分7分)
如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
23.(本小题满分7分)
某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
24.(本小题满分8分)
如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,
cos48°≈0.67, tan48°≈l.ll, 3≈1.73)
25.(本小题满分8分)
如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长
26.(本小题满分9分)
如图,抛物线y=33(x2+3x一4)与x轴交于A、B两点,与y轴交于点C.
(1)求点A、点C的坐标,
(2)求点D到AC的距离。
(3)看点P为抛物线上一点,以2为半径作⊙P,当⊙P与直线AC相切时,求点P的横坐标.
27.(本小题满分9分)
(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,
求证:A、B、C、D四个点在同一个圆上.
(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.
求证:点P、F、E三点在一条直线上.
(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小值.
下一页分享>>>初三上数学期末试卷答案