展开全部
Γ 是 yOz 坐标平面的右半单位圆, 对称于 y 轴。极坐标 y = cost, z = sint。
∑ 是单位球面,对称于 xOy 坐标平面; Ω 是单位球,对称于 xOy 坐标平面。
选项 A, C, D 积分函数是奇函数, 积分为 0, 正确。
选项 B , ∫<Γ>zdy = ∫<-π/2, π/2> sint(-sint)dt = -2∫<0, π/2> (sint)^2dt
= -∫<0, π/2> (1-cos2t)dt = -[t-(1/2)sin2t]<0, π/2> = -π/2 ≠ 0.
选 B。
∑ 是单位球面,对称于 xOy 坐标平面; Ω 是单位球,对称于 xOy 坐标平面。
选项 A, C, D 积分函数是奇函数, 积分为 0, 正确。
选项 B , ∫<Γ>zdy = ∫<-π/2, π/2> sint(-sint)dt = -2∫<0, π/2> (sint)^2dt
= -∫<0, π/2> (1-cos2t)dt = -[t-(1/2)sin2t]<0, π/2> = -π/2 ≠ 0.
选 B。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询