泰勒公式的意义是什么?
展开全部
泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:
(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。
(2)应用泰勒公式可以证明区间上的函数等式或不等式。
(3)应用泰勒公式可以进行更加精密的近似计算。
(4)应用泰勒公式可以求解一些极限。
(5)应用泰勒公式可以计算高阶导数的数值。
扩展资料:
泰勒公式,应用于数学、物理领域,作为一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话。
在已知函数在某一点的各阶导数值的情况之下,可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询