
若函数f(x)=x^3+ax^2+1在(0,2)内单调递减,则实数a的取值范围
5个回答
2011-04-08 · 知道合伙人教育行家
关注

展开全部
f(x)=x^3+ax^2+1
f'(x) = 3x^2 + 2ax =3x(x+2a/3)=3(x+0){x-(-2a/3)}
当x∈(0,2a/3)时,f'(x)<0,f(x)单调减
在(0,2)内单调递减,则 -2a/3 ≥ 2,解得:a≤-3
f'(x) = 3x^2 + 2ax =3x(x+2a/3)=3(x+0){x-(-2a/3)}
当x∈(0,2a/3)时,f'(x)<0,f(x)单调减
在(0,2)内单调递减,则 -2a/3 ≥ 2,解得:a≤-3

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
f'=3x^2+2ax<0
x(x+2a/3)<0
有题意得递减区间为0<x<-2a/3
所以要满足2<-2a/3
a<-3
x(x+2a/3)<0
有题意得递减区间为0<x<-2a/3
所以要满足2<-2a/3
a<-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f'(x)=3x^2+2ax
f(x)=x^3+ax^2+1在(0,2)内单调递减,
在(0,2)内f'(x)<=0
-a/3>0 a<0
f'(2)=12+4a<=0 a<=-3
实数a的取值范围 a<=-3
f(x)=x^3+ax^2+1在(0,2)内单调递减,
在(0,2)内f'(x)<=0
-a/3>0 a<0
f'(2)=12+4a<=0 a<=-3
实数a的取值范围 a<=-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先求导然后按二次函数处理就可以了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询