用换元法计算不定积分∫x sin[(x^2)+4] dx

 我来答
华源网络
2022-09-08 · TA获得超过5598个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
令x^2+4=t,则d(x^2+4)=dt,即2xdx=dt
∴∫x sin[(x^2)+4] dx
=∫sin[(x^2)+4]xdx
=(1/2)×∫sin[(x^2)+4]×2xdx
=(1/2)×∫sintdt
=-(1/2)cost+C
=-(1/2)cos[(x^2)+4]+C(其中C为任意常数)
或:直接凑微分得
∫xsin[(x^2)+4] dx
=(1/2)×∫sin[(x^2)+4]d(x^2)
=(1/2)×∫sin[(x^2)+4]d[(x^2)+4]
=-(1/2)cos[(x^2)+4]+C(其中C为任意常数)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式