lim(x→0)[2^x/㏑(1+2x)-1/㏑(1+2x)]=

 我来答
大仙1718
2022-08-11 · TA获得超过1281个赞
知道小有建树答主
回答量:171
采纳率:98%
帮助的人:62.6万
展开全部
lim(x→0) [2^x/ln(1 + 2x) - 1/ln(1 + 2x)]
= lim(x→0) (2^x - 1)/ln(1 + 2x)
= lim(x→0) (2^x - 1)/(2x)、等价无穷小ln(1 + kx) kx
= lim(x→0) [e^(xln2) - 1]/(xln2) * ln(2)/2
= 1 * ln(2)/2
= (1/2)ln(2)
——————————————————————————
其中定理lim(x→0) (e^x - 1)/x = 1
证明:设y = e^x - 1,x = ln(y + 1)
lim(x→0) (e^x - 1)/x
= lim(y→0) y/ln(y + 1)
= lim(y→0) 1/[(1/y)ln(y + 1)]
= lim(y→0) 1/[ln(y + 1)^(1/y)]
= 1/ln(e)
= 1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式