解方程:(x²+x+1)/(x²+1)+(2x²+x+2)/(x²+x+1)=19/6
2个回答
展开全部
解:方程为(x²+x+1)/(x²+1)+(2x²+x+2)/(x²+x+1)=19/6,化为1+x/(x²+1)+2-x/(x²+x+1)=19/6,x/(x²+1)-x/(x²+x+1)=1/6,x[1/(x²+1)-1/(x²+x+1)]=1/6,x²/[(x²+1)(x²+x+1)]=1/6,6x²=(x²+1)(x²+x+1),6=(1+1/x²)(1+1/x+1/x²),设1/x=y,6=(1+y²)(1+y+y²),y⁴+y³+2y²+y-5=0,y⁴+y³-2y²+4y²+y-5=0,y²(y+2)(y-1)+(y-1)(4y+5)=0,(y-1)(y³+2y²+4y-5)=0,有y=1或y³+2y²+4y-5=0,得:y₁=1,y₂=0.8009,y₃=-1.40044+2.0693i,y₄=1.40044-2.0693i;x₁=1,x₂=1.2486
请参考
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询