一道关于高等代数(线性代数)方面的基础解系的题目

证明:若a1,a2,a3为Ax=b的基础解系,则a1+a2,a2+a3,a3+a1也是Ax=b的基础解系证明:若a1,a2,a3为Ax=b的基础解系,则a1+a2,a2+... 证明:若a1,a2,a3为Ax=b的基础解系,则a1+a2,a2+a3,a3+a1也是Ax=b的基础解系
证明:若a1,a2,a3为Ax=b的基础解系,则a1+a2,a2+a3,a3+a1也是Ax=b的基础解系
展开
lry31383
高粉答主

2011-04-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
基础解系是对齐次线性方程组而言的, 题目应该为:
若a1,a2,a3为Ax=0的基础解系,则a1+a2,a2+a3,a3+a1也是Ax=0的基础解系

证明一个向量组是基础解系需证:
1. 都是解
2. 线性无关
3. 向量个数达到基础解系所含向量个数, 即 n-r(A)
3'. 任一解向量可由它线性表示

1.由于齐次线性方程组的解的线性组合仍是解, 所以 a1+a2,a2+a3,a3+a1都是Ax=0的解
2.由 (a1+a2,a2+a3,a3+a1) = (a1,a2,a3)B
B =
1 0 1
1 1 0
0 1 1
|B| = 2, 所以B可逆
所以 a1+a2,a2+a3,a3+a1与a1,a2,a3等价
所以 r(a1+a2,a2+a3,a3+a1) = r(a1,a2,a3)=3
故 a1+a2,a2+a3,a3+a1线性无关, 且任一解向量可由它线性表示.

所以 a1+a2,a2+a3,a3+a1也是Ax=0的基础解系.

有问题请消息我或追问
搞定就采纳 ^_^
jimmy540056774
2011-04-08
知道答主
回答量:10
采纳率:0%
帮助的人:0
展开全部
sadA sadsa
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式