设函数f(x)在区间[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,求证:

 我来答
茹翊神谕者

2023-07-16 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1538万
展开全部

简单分析一下,详情如图所示

黑科技1718
2022-10-07 · TA获得超过5847个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.6万
展开全部
一、
1、令F(x)=f(x)-x
则F(1/2)=1/2,F(1)=-1
有零点定理知,F(x)在(1/2 ,1)上有零点,故存在η属于(1/2,1),使f(η)=η
2、原式=f(x)'-1-λ(f(x)-x)=0
令F(x)=( f(x)-x )/e^λx
易知F(0)=0,F(η)=0
所以存在ξ属于(0,η),使得F‘(x)=0
又因为F’(x)=( f(x)'-1-λ(f(x)-x) )/e^λx
所以存在ξ属于(0,η),使f'(ξ)-λ(f(ξ)-ξ)=1.
二、
用反证法
若对于任意的x属于(0,1),都有f‘(x)小于等于1
易知f(x)小于等于1,当f‘(x)恒等于1时等号成立,
又因为f(x)是x的非线性函数,所以f‘(x)不恒等于1
所以f(1)小于1,与已知矛盾
所以在(0,1)内至少存在一点ξ,使f'(ξ)>1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式