设n阶方阵A满足A2-A-7E=0,证明A和A-3E可逆

 我来答
大沈他次苹0B
2022-09-27 · TA获得超过7286个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:172万
展开全部
由A^2-A-7E=0得:A(A-1)=7E 故A(A-1)的行列式为7 而不为0,假如A是不可逆矩阵,则A的行列式为0 那么A(A-1)的行列式就为0 矛盾,所以A可逆
又原式可变为(A+2E)(A-3E)=E 同上面的推理知A-3E可逆
其实A,(A-1),(A+2E),(A-3E)均可逆
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式