3-(a+1)(a-1)化简?

 我来答
帐号已注销
2022-12-29 · TA获得超过6.2万个赞
知道小有建树答主
回答量:2777
采纳率:100%
帮助的人:96.9万
展开全部
你好:
解:
3-(a+1)(a-1)
=3-(a²-1)
=3-a²+1
=4-a²
这个是化简计算:
化简是指在物理、化学和数学等理工科中把复杂式子化为简单式子的过程。
化简广泛应用于物理、化学和数学等理工学科。化简在数学上是一个非常重要的概念。复杂的式子,必须通过化简才能简便地求出它的值。
化简可分为整式化简、分数化简和解方程等。整式化简包括移项、合并同类项、去括号等;分数化简称为约分;解方程也可以看作是一个化简的过程。化简后的式子一般为最简式。
整式化简内容主要包括整式的加、减、乘、除、乘方运算;方差公式、完全平方公式的运用;利用整式的运算解决简单的实际问题。
整式化简的一般顺序:先乘方,再乘除,最后加减,能用乘法公式的先用公式计算使计算简便。
化简的结果要求化到最简,最后结果若含有同类项,则要合并同类项。在求代数式的值时,为使计算简便,一般要先化简,再代入求值。
分数化简一般采用以下方法。
1.先找出中主分线,确定分子部分和分母部分,然后这两部分分别进行计算,每部分的计算结果能约分的要约分,最后改成“分子部分/分母部分”的形式,再求出结果。
2.根据分数的基本性质,经繁分数的分子部分和分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
3.繁分数的化简一般由下至上,由左到右,逐次进行化简。繁分数的分子部分和分母部分如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。即把小数化成分数,或把分数化成小数后再进行化简。当分子部分和分母部分统一成小数后,化简的方法是中间约分时,把小数看成整数。
4.根据分数的基本性质,把繁分数的分子部分和分母部分都变成整数连乘,然后交叉约分算出结果来,在此基础上进行约分,即可得出最后的结果。
代数式,是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。
代数式是一种常见的解析式,对变数字母仅限于有限次代数运算(加、减、乘、除、乘方、开方)的解析式称为代数式,等都是代数式,单独的一个数或字母也称为代数式。
有理式化简:
有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。
整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。
1.单项式
没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式
几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。
不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。
同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。
用与学
2022-12-29 · 和大家交流数学等自然科学在生活中的应用
用与学
采纳数:863 获赞数:1390

向TA提问 私信TA
展开全部
解:
(a+1)(a-1)=a^2-1
题目=3-(a^2-1)=4-a^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
深远又美好的小福星F
2022-12-29
知道答主
回答量:5
采纳率:0%
帮助的人:1279
展开全部
3-(a+1)(a-1)
=3-(a^2-1)
=4-a^2
(2+a)(2-a)=4-a^2
两式化简的结果相同,都是4-a^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jjjjttthhh
2022-12-29 · TA获得超过3.9万个赞
知道大有可为答主
回答量:3.6万
采纳率:86%
帮助的人:3724万
展开全部
3-(a+1)(a-1)
=3-(a²-1)
=3-a²+1
=4-a²或
=(2+a)(2-a)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式