二重积分的图像是什么样子?
1个回答
展开全部
如图所示:
图二:
当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy,从而二重积分可以表示为:
由此可以看出二重积分的值是被积函数和积分区域共同确定的。将上述二重积分化成两次定积分的计算,称之为:化二重积分为二次积分或累次积分。
相关介绍:
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
n 维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。非正式地说,它是X中所有点的平均。如果一个物件质量分布平均,形心便是重心。
判断形心的位置:
当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形。
形心是一个对称轴的截面,一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。把均匀平面薄片的重心叫做这平面薄片所占的平面图形的形心。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询