
四阶常系数齐次线性微分方程怎么求解?
1个回答
展开全部
四阶常系数齐次线性微分方程:y^(4)-2y^(3)+5y^(2)-8y^(1)+4y=0
通解:(C1+C2t)e^t+C3cos2t+C4sin2t=0
解题思路:特征根的表得知
由te^t知两个一样的解
知(C1+C2t)e^t
另外一个知C3cos2t+C4sin2t
知(r-1)^2(r^2+4)
所以,该四阶常系数齐次线性微分方程为y^(4)-2y^(3)+5y^(2)-8y^(1)+4y=0
通解是:(C1+C2t)e^t+C3cos2t+C4sin2t=0
扩展资料
线性微分方程表达式:
线性微分方程的一般形式是:
其中D是微分算子d/dx(也就是Dy = y',D2y = y",……)。
把对应的齐次方程的补函数加上非齐次方程本身的一个特解,便可以得到非齐次方程的另外一个解。如果是常数,那么方程便称为常系数线性微分方程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-07-25 广告
短路计算的条件主要包括以下几点:1. 假设系统有无限大的容量,即系统容量无限大。2. 用户处短路后,系统母线电压能维持不变,即计算阻抗比系统阻抗要大得多。3. 在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询