函数为什么在某一点不可导呢?
1个回答
展开全部
对一般的函数而言,在某一点不可导有两种情况。
1、函数图象在这一点的倾斜角是90度。
2、该函数是分段函数,在这一点处左导数不等于右导数。
左导数是=lim(x趋于x0-) [f(x)-f(x0)]/(x-x0),右导数是=lim(x趋于x0+) [f(x)-f(x0)]/(x-x0)
重根就是两个以上的根退变为一个相同数值的根。
扩展资料:
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x是自变量,y是x的函数。x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询