平行线分线段成比例定理推论

 我来答
百度网友ce7be31
2023-01-31 · TA获得超过292个赞
知道小有建树答主
回答量:1713
采纳率:100%
帮助的人:27.1万
展开全部

平行线分线段成比例定理推论指的是两条直线被一组平行线(不少于3条)所截,截得的对应线段的长度成比例。推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例。

定理证明:设三条平行线与直线 m 交于 A、B、C 三点,与直线 n 交于 D、E、F 三点。

连结AE、BD、BF、CE,根据平行线的性质可得 S△ABE=S△DBE, S△BCE=S△BEF,

∴S△ABE/S△CBE=S△DBE/S△BFE

根据不同底等高三角形面积比等于底的比可得:AB/BC=DE/EF。

由更比性质、等比性质得:AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF。

平行线分线段成比例(dividing the segmentsinto proportional by parallel lines)亦称平行截割定理,平面几何术语。应用:指三条平行线截两条直线所得的四条线段对应成比例。平行截割定理是研究相似形最常用的一个性质,它的重要特例:在一直线上截得相等线段的一组平行线,也把其他直线截成相等的线段,称其为平行线等分线段。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式