二项分布的极大似然估计怎么做?
1个回答
展开全部
二项分布就是n个两点分布,两点分布的概率是P=p^x*(1-p)^(1-x),所以似然函数 L=p^∑Xi*(1-p)^(n-∑Xi),构造 lnL=∑Xi*lnp+(n-∑Xi) ln(1-p),对p进行求导,令其结果等于0,就是∑Xi/p+(n-∑Xi)/(1-p)=0,通分后令分母等于0,可以得到p=(∑Xi)/n
求极大似然函数估计值的一般步骤:
(1) 写出似然函数;
(2) 对似然函数取对数,并整理;
(3) 求导数 ;
(4) 解似然方程 。
扩展资料:
极大似然估计只是一种粗略的数学期望,要知道它的误差大小还要做区间估计。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。
极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。
参考资料来源:百度百科——极大似然估计
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询