求积分a∫√(1+x^2)积分区间 0到2π?
1个回答
展开全部
∫√(1+x^2)dx =x*√(1+x^2)-∫x^2/√(1+x^2)dx
=x*√(1+x^2)-∫(x^2+1)/√(1+x^2)dx +∫1/√(1+x^2)dx
=x*√(1+x^2)-∫√(1+x^2)dx +ln(x+√(1+x^2))+c
移项:得
∫√(1+x^2)dx =x/2*[√(1+x^2)]+1/2*[ln(x+√(1+x^2))]+c
代入积分上下限即可,1,
=x*√(1+x^2)-∫(x^2+1)/√(1+x^2)dx +∫1/√(1+x^2)dx
=x*√(1+x^2)-∫√(1+x^2)dx +ln(x+√(1+x^2))+c
移项:得
∫√(1+x^2)dx =x/2*[√(1+x^2)]+1/2*[ln(x+√(1+x^2))]+c
代入积分上下限即可,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询