区别如下:
1、运算结果上不同
矩阵是一个表格,行数和列数可以不一样;而行列式是一个数,且行数必须等于列数。只有方阵才可以定义它的行列式,而对于长方阵不能定义它的行列式。
两个矩阵相等是指对应元素都相等;两个行列式相等不要求对应元素都相等,甚至阶数也可以不一样,只要运算代数和的结果一样就行了。
2、运算方式不同
两矩阵相加是将各对应元素相加;两行列式相加,是将运算结果相加,在特殊情况下(比如有行或列相同),只能将一行(或列)的元素相加,其余元素照写。
3、性质不同
数乘矩阵是指该数乘以矩阵的每一个元素;而数乘行列式,只能用此数乘行列式的某一行或列,提公因数也如此。
4、变换后的结果不同
矩阵经初等变换,其秩不变;行列式经初等变换,其值可能改变:换法变换要变号,倍法变换差倍数;消法变换不改变。
扩展资料:
行列式性质
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
参考资料来源:百度百科-行列式
参考资料来源:百度百科-矩阵
2024-06-06 广告
矩阵就是一个数表,它不能从整体上被看成一个数(只有一个数的1阶矩阵除外),当矩阵的行数与列数相等为n时,我们把相应的数代入上面我提到的n^2元函数中就得到一个行列式。代入的方法则是简单的把两个表对应起来。
在作为一个数表的矩阵上,我们本可以任意的定义运算规则(真的是指你爱怎么定义就怎么定义),但是实际上我们多是把矩陈用于解决某些特殊类型的问题,所以你想要知道某种运算,比如乘法运算是怎么来的就得看年它们是做什么用的(比如用于线性变换)。
(1)行列式是方形数表中定义,对不是方形的数表,不能讨论行列式的问题,而矩阵无此限制。
(2)矩阵的加法与行列式的加法不同.
(3)数乘矩阵与数乘行列是不同.
(4)矩阵相乘与行列式相乘不同.
(5)行列式相等与矩阵相等不同。两行列式相等只要值一样就认为是相等的。两矩阵相等,则要求对应元素都分别相等。
ok?
行列式是一个数,可以计算出其具体数值。
而矩阵不是,是数的列阵,不能计算其数值
矩阵主要用来看方程组的解是否唯一(方程组的解n*m)