为什么按行展开的行列式值就是行列式的值?

 我来答
晓晓江苏
高粉答主

2023-01-18 · 每个回答都超有意思的
知道大有可为答主
回答量:268
采纳率:100%
帮助的人:6.5万
展开全部

行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值.

例如:D=a11·A11+a12·A12+a13·A13+a14·A14

Aij是aij对应的代数余子式

Aij=(-1)^(i+j)·Mij
Mij是aij对应的余子式。
(-1)^1+1=1

代数余子式前有(-1)的幂指数。

a11(-1)^(1十1)=1

所以A11=(-1)^(1+1)·M11=M11
A14=(-1)^(1+4)·M14     

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式