三角形内心定理及性质
1个回答
展开全部
答:
定理:三角形内心指三个内角的三条角平分线相交于一点,这个点叫做三角形的内心。这个点也是这个三角形内切圆的圆心。三角形内心到三角形三条边的距离相等。
比如AE是∠A的角平分线,BF是∠B的角平分线,CD是∠C的角平分线,三条线都相聚于I点,那么,I就是三角形的内心,也是这个三角形内切圆的圆心。
性质:
1、三角形的内心到三边的距离相等,都等于内切圆半径r
2、∠BIC=90°+∠BAC/2
3、在RtΔABC中,∠A=90°,三角形内切圆切BC于D,则S△ABC=BD×CD
4、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:
向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |