设G是三角形ABC的重心,向量AB=a,向量AC=b,试用a,b表示AG
3个回答
展开全部
设A(X1,Y1) B(X2,Y2) C(X3,Y3) 则向量AB=(x2-x1,y2-y1)=a
AC=b=(x3-x1,y3-y1)
则G((X1+X2+X3)/3,(Y1+Y2+Y3)/3)
则AG=((X1+X2+X3)/3-x1),(Y1+Y2+Y3)/3-y1)
=((x2-x1+x3-x1)/3,(y2-y1+y3-y1)/3)
=((x2-x1)/3,(y2-y1)/3)+((x3-x1)/3,(y3-y1)/3)
=(x2-x1,y2-y1)/3+(x3-x1,y3-y1)/3
=a/3+b/3
AC=b=(x3-x1,y3-y1)
则G((X1+X2+X3)/3,(Y1+Y2+Y3)/3)
则AG=((X1+X2+X3)/3-x1),(Y1+Y2+Y3)/3-y1)
=((x2-x1+x3-x1)/3,(y2-y1+y3-y1)/3)
=((x2-x1)/3,(y2-y1)/3)+((x3-x1)/3,(y3-y1)/3)
=(x2-x1,y2-y1)/3+(x3-x1,y3-y1)/3
=a/3+b/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询