如何判断解析函数在复平面上是否解析?
1个回答
展开全部
(1)如果给出的函数形式是f(z)=u(x,y)+i*v(x,y),且u和v的形式比较和谐,那么直接根据柯西-黎曼方程来进行判断。
(2)如果给出的函数形式是w=f(z)【表达式中只有z,没有x(即Rez)、y(即Imz)和其他自变量】,而且f(z)的形式比较和谐,那么在定义域内都可以认为f(z)是解析的。例如,若f(z)是关于z的有理函数,那么除了分母为0的点之外,在其他地方都是解析的;如果含有对数,那么还要剔除对数内的部分为0的情况。
(3)如果给出的函数形式是w=f(z,z')【其中z'是z的共轭】,而没有其他变量,而且函数的形式比较和谐,那么这个函数在复平面上处处不解析。
(4)如果给出的函数形式是这样的:
如果要求函数f(z)在z0处是否解析,就要根据u和v的表达式,结合柯西-黎曼方程判断f(z)在z0附近【不包括z0】是否可导。如果可导,进一步通过定义法判断f(z)在z0点是否可导。若两次判断都满足可导条件,则f(z)在z0处解析。
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询