已知数列{an}的前n项和为Sn=n²+2n(1)求数列的通项公式an(2)Tn=1/a1a2+1/a2a3+1/a3a4+...+1/ana
2011-04-09
展开全部
(1)an=Sn-S(n-1)=2n+1
(2)裂(拆)项法
Tn=1/(3*5)+1/(5*7)+....+1/[an*a(n+1)]
=1/2{1/3-1/5)+(1/5-1/7)+1/an-1/a(n+1)}
=1/2[1/3-1/a(n+1)]
(2)裂(拆)项法
Tn=1/(3*5)+1/(5*7)+....+1/[an*a(n+1)]
=1/2{1/3-1/5)+(1/5-1/7)+1/an-1/a(n+1)}
=1/2[1/3-1/a(n+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=Sn-S(n-1)=2n+1
Tn=1/(3*5)+1/(5*7)+....+1/[an*a(n+1)]
=1/2{1/3-1/5)+(1/5-1/7)+1/an-1/a(n+1)}
=1/2[1/3-1/a(n+1)]
Tn=1/(3*5)+1/(5*7)+....+1/[an*a(n+1)]
=1/2{1/3-1/5)+(1/5-1/7)+1/an-1/a(n+1)}
=1/2[1/3-1/a(n+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)Sn=n2+2n
an=Sn-S(n-1)
=n2+2n-[(n-1)2+2(n-1)]
=2n+1
(2)1/ana(n+1)
=1/(2n+1)(2n+3)
=[1/(2n+1)-1/(2n+3)]/2
∴Tn=[1/3-1/5+1/5-1/7+1/7-1/9+……+1/(2n+1)-1/(2n+3)]/2
=[1/3-1/(2n+3)]/2
=n/[3(2n+3)]
an=Sn-S(n-1)
=n2+2n-[(n-1)2+2(n-1)]
=2n+1
(2)1/ana(n+1)
=1/(2n+1)(2n+3)
=[1/(2n+1)-1/(2n+3)]/2
∴Tn=[1/3-1/5+1/5-1/7+1/7-1/9+……+1/(2n+1)-1/(2n+3)]/2
=[1/3-1/(2n+3)]/2
=n/[3(2n+3)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询