展开全部
【1】用“柯西不等式”来证明,较简单。【2】∵a,b,c>0.∴由基本不等式可知:a+b≥2√(ab),b+c≥2√(bc),c+a≥2√(ca).三式相乘,可得:(a+b)(b+c)(c+a)≥8abc.===>[(a+b)/c][(b+c)/a][(c+a)/b]≥8.===>[(1-c)/c][(1-b)/b][(1-a)/a]≥8.===>(1/c-1)(1/b-1)(1/a-1)≥8
追问
呃……整本数学选修4-5不等式选讲,老师就说不学第三讲柯西不等式……第一题可不可以用放缩法证明一下?其他方法也行,只要不是柯西不等式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询