圆周率是如何计算导出的
展开全部
圆周率是指平面上圆的周长与直径之比.。
中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也就是圆周率是“周三径一”即л=3。很明显,这个数值有很大误差。公元263年,魏晋数学家刘徽在注释《九章算术》时 ,用割圆术即圆内接正多边形的方法求得精确到2位小数的π值。割圆术即现代极限理论。
在祖冲之那个时代,计算圆周率,一般是运用割圆术原理和使用算筹工具,算筹是用竹、木、铁、玉等制成的一根根几寸长的方形或扁形的小棍子。据《隋书•律历志》记载,祖冲之利用这原始的计算工具,按照刘徽的割圆术之法,设置了一个直径为一丈的圆,在圆内切割计算。从12 边形到12288 边形反复地运算,将圆周率精确到了小数点后7位。直到一千年之后才有人打破这个纪录。
祖冲之圆周率的研究工作记载在祖冲之写的《缀术》一书中,被收入著名的《算经十书》中,可惜后来失传了。《隋书•律历志》只留下一小段关于圆周率(π)的记载。因此,祖冲之推算圆周率的方法现在已经无法查证。割圆术是刘徽的,他计算到3072边形。祖冲之求圆周率,具体用的是什么方法,尚无定论,只是推测他可能使用割圆术。
也有人说祖冲之的办法其实很简单, 他就是把一个轮子上做一个标记,然后滚一周,测量一下这个轮子走了多远(周长),然后测量轮子的直径。 这样的实验他做了许多次,得出周长和直径的比率。
其实圆周率的精度,那完全取决于圆的周长和直径测量的精度及用尺子的精度。取决与计算式和计算过程的正确性。现代使用计算机则方便多了。
中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也就是圆周率是“周三径一”即л=3。很明显,这个数值有很大误差。公元263年,魏晋数学家刘徽在注释《九章算术》时 ,用割圆术即圆内接正多边形的方法求得精确到2位小数的π值。割圆术即现代极限理论。
在祖冲之那个时代,计算圆周率,一般是运用割圆术原理和使用算筹工具,算筹是用竹、木、铁、玉等制成的一根根几寸长的方形或扁形的小棍子。据《隋书•律历志》记载,祖冲之利用这原始的计算工具,按照刘徽的割圆术之法,设置了一个直径为一丈的圆,在圆内切割计算。从12 边形到12288 边形反复地运算,将圆周率精确到了小数点后7位。直到一千年之后才有人打破这个纪录。
祖冲之圆周率的研究工作记载在祖冲之写的《缀术》一书中,被收入著名的《算经十书》中,可惜后来失传了。《隋书•律历志》只留下一小段关于圆周率(π)的记载。因此,祖冲之推算圆周率的方法现在已经无法查证。割圆术是刘徽的,他计算到3072边形。祖冲之求圆周率,具体用的是什么方法,尚无定论,只是推测他可能使用割圆术。
也有人说祖冲之的办法其实很简单, 他就是把一个轮子上做一个标记,然后滚一周,测量一下这个轮子走了多远(周长),然后测量轮子的直径。 这样的实验他做了许多次,得出周长和直径的比率。
其实圆周率的精度,那完全取决于圆的周长和直径测量的精度及用尺子的精度。取决与计算式和计算过程的正确性。现代使用计算机则方便多了。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询