7.求下列函数的极值:1) f(x,y)=2xy-3x^2-2y^2 ;(2) f(x,y)=xy
展开全部
(1) 法1 : f(x,y) = 2xy-3x^2-2y^2,
f'x = 2y-6x, f'y = 2x-4y, 解得驻点 O(0, 0)
A = f''xx = -6 < 0, B = f''xy = 2, C = f''yy = -4
B^2 - AC = -20 < 0, 驻点 O(0, 0)为极大值点, 极大值 f(0,0) = 0.
法2 , f(x,y) = 2xy-3x^2-2y^2 = 2xy-x^2-y^2 - 2x^2 - y^2
= -(x-y)^2 - 2x^2 - y^2, 极大值 f(0,0) = 0
(2) f(x,y) = xy
f'x = y, f'y = x, 解得驻点 O(0, 0)
A = f''xx = 0, B = f''xy = 1, C = f''yy = 0
B^2 - AC = 1 > 0, 驻点 O(0, 0)不是极值点, 无极值.
f'x = 2y-6x, f'y = 2x-4y, 解得驻点 O(0, 0)
A = f''xx = -6 < 0, B = f''xy = 2, C = f''yy = -4
B^2 - AC = -20 < 0, 驻点 O(0, 0)为极大值点, 极大值 f(0,0) = 0.
法2 , f(x,y) = 2xy-3x^2-2y^2 = 2xy-x^2-y^2 - 2x^2 - y^2
= -(x-y)^2 - 2x^2 - y^2, 极大值 f(0,0) = 0
(2) f(x,y) = xy
f'x = y, f'y = x, 解得驻点 O(0, 0)
A = f''xx = 0, B = f''xy = 1, C = f''yy = 0
B^2 - AC = 1 > 0, 驻点 O(0, 0)不是极值点, 无极值.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询