
已知1/x+1/(y+z)=1/2,1/y+1/(x+z)=1/3,1/z+1/(x+z)=1/4求2/x+3/y+4/z
展开全部
从1/x+1/(y+z)=1/2,
可得 (x+y+z)/[x(y+z)]=1/2
即 1/x =(y+z)/[2(x+y+z)]
同样可得:
1/y=(x+z)/[3(x+y+z)]
1/z=(x+y)/[4(x+y+z)]
所以:
2/x+3/y+4/z
=(y+z)/(x+y+z)+(x+z)/(x+y+z)+(x+y)/(x+y+z)
=2(x+y+z)/(x+y+z)
=2
可得 (x+y+z)/[x(y+z)]=1/2
即 1/x =(y+z)/[2(x+y+z)]
同样可得:
1/y=(x+z)/[3(x+y+z)]
1/z=(x+y)/[4(x+y+z)]
所以:
2/x+3/y+4/z
=(y+z)/(x+y+z)+(x+z)/(x+y+z)+(x+y)/(x+y+z)
=2(x+y+z)/(x+y+z)
=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询