如图,在三角形ABC中,角BAC=90度,AB=AC,点D、E在BC上,角DAE=45度,求证:BE2+CD2=DE2
如图,在三角形ABC中,角BAC=90度,AB=AC,点D、E在BC上,角DAE=45度,求证:BE2+CD2=DE2...
如图,在三角形ABC中,角BAC=90度,AB=AC,点D、E在BC上,角DAE=45度,求证:BE2+CD2=DE2
展开
5个回答
展开全部
证明:
把⊿ABE绕点A逆时针旋转90度到⊿ACF的位置,连接DF。
则CF=BE;且∠ACF=∠ABE=45°,∠ACF+∠DCA=90°,得CD²+CF²=DF²,CD²+BE²=DF²。
又∠CAF=∠BAE,则∠CAF+∠CAD=∠BAE+∠CAD=∠CAB-∠DAE=45°。
即∠DAF=∠DAE;又AF=AE,AD=AD,则⊿DAF≌ΔDAE(SAS),得DF=DE。
∴CD²+BE²=DE²。(等量代换)
三角形(triangle)是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
基本定义
由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
由三条线段首尾顺次相连,得到的封闭几何图形叫作三角形。三角形是几何图案的基本图形。
推荐于2017-09-29 · 知道合伙人教育行家
关注
展开全部
证明:
过A点做AF⊥AD,并截取AF=AD
连接FD,FE,FB
∵∠FAD=90°,∠EAD=45°
∴∠FAE=90°-45°=45°
∴∠FAE=∠DAE
又:AE=AE,AD=AF
∴△FAE≌△DAE
∴FE=DE
∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD
又:∠FAD=∠BAC=90°
∴∠FAB=∠DAC=90°-∠BAD
又:AF=AD,AB=AC
∴△FAB≌△DAC
∴BF=CD
∵△FAB≌△DAC
∴∠ABE=∠C=45°
又:∠ABC=45°
∴∠FBE=45°+45°=90°
∴△FBE是直角三角形
∴BE^2+BF^2=FE^2
又:BF=CD,FE=DE
∴BE^2+CD^2=DE^2
过A点做AF⊥AD,并截取AF=AD
连接FD,FE,FB
∵∠FAD=90°,∠EAD=45°
∴∠FAE=90°-45°=45°
∴∠FAE=∠DAE
又:AE=AE,AD=AF
∴△FAE≌△DAE
∴FE=DE
∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD
又:∠FAD=∠BAC=90°
∴∠FAB=∠DAC=90°-∠BAD
又:AF=AD,AB=AC
∴△FAB≌△DAC
∴BF=CD
∵△FAB≌△DAC
∴∠ABE=∠C=45°
又:∠ABC=45°
∴∠FBE=45°+45°=90°
∴△FBE是直角三角形
∴BE^2+BF^2=FE^2
又:BF=CD,FE=DE
∴BE^2+CD^2=DE^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解证明:
过A点做AF⊥AD,并截取AF=AD
连接FD,FE,FB
∵∠FAD=90°,∠EAD=45°
∴∠FAE=90°-45°=45°
∴∠FAE=∠DAE
又:AE=AE,AD=AF
∴△FAE≌△DAE
∴FE=DE
∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD
又:∠FAD=∠BAC=90°
∴∠FAB=∠DAC=90°-∠BAD
又:AF=AD,AB=AC
∴△FAB≌△DAC
∴BF=CD
∵△FAB≌△DAC
∴∠ABE=∠C=45°
又:∠ABC=45°
∴∠FBE=45°+45°=90°
∴△FBE是直角三角形
∴BE^2+BF^2=FE^2
又:BF=CD,FE=DE
∴BE^2+CD^2=DE^2
抄袭楼上的
过A点做AF⊥AD,并截取AF=AD
连接FD,FE,FB
∵∠FAD=90°,∠EAD=45°
∴∠FAE=90°-45°=45°
∴∠FAE=∠DAE
又:AE=AE,AD=AF
∴△FAE≌△DAE
∴FE=DE
∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD
又:∠FAD=∠BAC=90°
∴∠FAB=∠DAC=90°-∠BAD
又:AF=AD,AB=AC
∴△FAB≌△DAC
∴BF=CD
∵△FAB≌△DAC
∴∠ABE=∠C=45°
又:∠ABC=45°
∴∠FBE=45°+45°=90°
∴△FBE是直角三角形
∴BE^2+BF^2=FE^2
又:BF=CD,FE=DE
∴BE^2+CD^2=DE^2
抄袭楼上的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-02-27
展开全部
证明:把⊿ABE绕点A逆时针旋转90度到⊿ACF的位置,连接DF.
则CF=BE;且∠ACF=∠ABE=45°,∠ACF+∠DCA=90°,得CD²+CF²=DF²,CD²+BE²=DF²;
又∠CAF=∠BAE,则∠CAF+∠CAD=∠BAE+∠CAD=∠CAB-∠DAE=45°.
即∠DAF=∠DAE;又AF=AE,AD=AD,则⊿DAF≌ΔDAE(SAS),得DF=DE.
∴CD²+BE²=DE².(等量代换)
则CF=BE;且∠ACF=∠ABE=45°,∠ACF+∠DCA=90°,得CD²+CF²=DF²,CD²+BE²=DF²;
又∠CAF=∠BAE,则∠CAF+∠CAD=∠BAE+∠CAD=∠CAB-∠DAE=45°.
即∠DAF=∠DAE;又AF=AE,AD=AD,则⊿DAF≌ΔDAE(SAS),得DF=DE.
∴CD²+BE²=DE².(等量代换)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sanjiaoxing ADC shunshizhen xuanzhuan 90du jike
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询