一元一次方程一元一次方程练习题

 我来答
宸辰游艺策划
2023-05-24 · 分享有趣专业的游艺小知识
宸辰游艺策划
向TA提问
展开全部
1、一元一次方程公式是什么?2、一元一次方程是什么?3、什么叫一元一次方程?4、什么叫做一元一次方程?5、什么是一元一次方程

一元一次方程公式是什么?

对于x的一元一次方程是:ax+b=0(a≠0),其求根公式为:x=-b/a。

一元一次方程几种解法:

1、去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数。

2、去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号。

3、移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边。

4、合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式。

5、把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。

一元一次方程的应用:

一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。

而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。

如在初等数学范围内证明“0.9的循环等于1”之类的问题。通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。

一元一次方程是什么?

只含有1个未知数、未知数的最高次数为1,且两边都为整式的等式[必须满足含有未知数、是等式、两边是整式]叫做一元一次方程

一元一次方程的表示:ax+b=0,其中a≠0

例如3x+5=11是一元一次方程

3x+5不是一元一次方程,因为不是等式

3×2+5=11不是一元一次方程,因为没有未知数

x分之1+5=11不是一元一次方程,因为等式两边不是整式

3x_+5=11不是一元一次方程,因为最高项的次数不是1

解一元一次方程的一般步骤是:

去分母:在方程两边都乘以各分母的最小公倍数.

去括号:先去小括号,再去中括号,最后去大括号.

移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.

合并同类项:把方程化成ax[+c]=b(a≠0)的形式.

系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b[-c]/a

例如

3x+5=11

解[一定要写]:3x+5-5=11-5

3x=6

3x÷3=6÷3

x=2

解一元一次方程应用题8种常用公式

①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;

②行程类问题,即路程=速度×时间;

③工程问题,即工作量=工作效率×工作时间;

④浓度问题,即溶质质量=溶液质量×浓度;

⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系;

⑥等积问题,即变形前后的质量(或体积)不变;

⑦数字问题,即有若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a;

⑧经济问题,即利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;税后利息=本金×利率×期数×(1-利息税率);商品的利润=商品的售价-商品的进价;商品的利润率=利润×100%.

望采纳

什么叫一元一次方程?

只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程。其一般形式是:

一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。

扩展资料:

解一元一次方程有五步,即去分母、去括号、移项、合并同类项、系数化为1,所有步骤都根据整式和等式的性质进行。

以解方程

为例:

1、去分母,得:

2、去括号,得:

3、移项,得:

4、合并同类项,得:

5、系数化为1,得:

参考资料来源:百度百科-一元一次方程

什么叫做一元一次方程?

在一个方程中,如果只含有一个未知数一元一次方程,且未知数一元一次方程的最高次数是1的整式方程叫做一元一次方程。(linear equation in one)

一般形式:ax+b=0(a、b为常数,a≠0)。一元一次方程只有一个解。

一元一次方程的最终结果(方程的解)是x=a的形式

一元一次方程的“等式的性质1”和“等式的性质2”

1.等式两边同时加或减一个相同数,等式两边相等。(如果a=b,那么a±c=b±c。)

2.等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。(如果a=b,那么ac=bc。如果a=b,c≠0,那么a/c=b/c。)

解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。

例:7x+23=100

解: 7x=100-23

7x=77

x=77÷7

x=11

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1 某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

简单的应用:求加数=和—另一个加数

求被减数=差+减数

求减数=被减数-差

求因数=积/另一个因数

求被除数=商*除数

求除数=被除数/商

一般解法:

⒈去分母 方程两边同时乘各分母的最小公倍数。

⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。

⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。

⒋合并同类项 将原方程化为ax=b(a≠0)的形式。

⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。

一元一次方程练习题

基本题型:

一、选择题:

1、下列各式中是一元一次方程的是( )

A. 5a+4b B.4x+9x

C. 5x2+9y2 D. 7a-4b

2、方程3x-2=-5(x-2)的解是( )

A.-1.5 B. 1.5C. 1 D. -1

3、若关于 的方程 的解满足方程 ,则 的值为( )

A. 10 B. 8 C. D.

4、下列根据等式的性质正确的是( )

A. 由 ,得 B. 由 ,得

C. 由 ,得 D. 由 ,得

5、解方程 时,去分母后,正确结果是( )

A. B.

C. C.

6 、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )

A. 0.81a 元 B. 1.21a元 C. 1.1a元 D.0.1a 元

8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )

A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元

9、下列方程中,是一元一次方程的是( )

(A) (B) (C) (D)

10、方程 的解是( )

(A) (B) (C) (D)

11、已知等式 ,则下列等式中不一定成立的是( )

(A) (B)

(C) (D)

12、方程 的解是 ,则 等于( )

(A) (B) (C) (D)

13、解方程 ,去分母,得( )

(A) (B)

(C) (D)

14、下列方程变形中,正确的是( )

(A)方程 ,移项,得

(B)方程 ,去括号,得

(C)方程 ,未知数系数化为1,得

(D)方程 化成

15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.

(A)3年后; (B)3年前; (C)9年后; (D)不可能.

16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( )

(A) (B)

(C) (D)

17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( )

(A) 元; (B) 元; (C) 元; (D) 元.

一年期 二年期 三年期

2.25 2.43 2.70

18、银行教育储蓄的年利率如右下表:

小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )

(A)直接存一个3年期;

(B)先存一个1年期的,1年后将利息和自动转存一个2年期;

(C)先存一个1年期的,1年后将利息和自动转存两个1年期;

(D)先存一个2年期的,2年后将利息和自动转存一个1年期.

二. 填空题:

1、 ,则 ________.

2、已知 ,则 __________.

3、关于 的方程 的解是3,则 的值为________________.

4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________.

5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.

6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____.

7、当 ___时,代数式 与 的值互为相反数.

8、在公式 中,已知 ,则 ___.

日 一 二 三 四 五 六

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数

,请用一个等式表示 之间的关系______________.

10、一根内径为3_的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8_、高为1.8_的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了_____.

11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.

12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).

13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.

14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元

15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.

三、解方程:

1、 2、

3、 4、

5、 6、

7、 8、

9、已知 是方程 的根,求代数式 的值.

四、列方程解应用题:

1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?

2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?

3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由.

4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?

5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?

6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?

7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?

8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?

较高要求:

1、已知 ,那么代数式 的值。

2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).

(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%

3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?

4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.

方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;

方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;

(1)你认为选择哪种方案获利最多,为什么?

(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?

5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?

什么是一元一次方程

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。

一元一次方程解法

1、去分母:在方程两边都乘以各分母的最小公倍数;

2、去括号:先去小括号,再去中括号,最后去大括号;

3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

4、合并同类项:把方程化成ax=b(a≠0)的形式;

5、系数化成1。

一元一次方程的历史

一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式