如图,在△ABC中,∠C=90°,AC=3,BC=4.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边分别交于点D、点
如图,在△ABC中,∠C=90°,AC=3,BC=4.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE。(1)当BD=3时,求线...
如图,在△ABC中,∠C=90°,AC=3,BC=4.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE。
(1)当BD=3时,求线段DE的长。
(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F,求证:△FAE是等腰三角形 图形:http://hi.baidu.com/%D3%C4%C0%B6%E3%B0%D3%B0/album/item/3b33390358420c303812bbdf.html
不要复制的,要仔细的过程 展开
(1)当BD=3时,求线段DE的长。
(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F,求证:△FAE是等腰三角形 图形:http://hi.baidu.com/%D3%C4%C0%B6%E3%B0%D3%B0/album/item/3b33390358420c303812bbdf.html
不要复制的,要仔细的过程 展开
展开全部
证明:(1)连接OE.
∵EF=AF,
∴∠A=∠AEF.
∵OE=OB,
∴∠OEB=∠OBE.
∵∠C=90°,
∴∠A+∠B=90°.
∴∠AEF+∠OEB=90°.
∴∠FEO=90°.
∵OE是⊙O半径,
∴EF是⊙O的切线.
解:(2)∵∠C=90°,BC=4,AC=3,
∴AB=5.
∵BD是直径,
∴∠DEB=90°.
∴∠DEB=∠C.
∵∠B=∠B,
∴△BED∽△BCA.
∴BD AB =DE AC ,
∴3 5 =DE 3 ,DE=9 5 .
∵EF=AF,
∴∠A=∠AEF.
∵OE=OB,
∴∠OEB=∠OBE.
∵∠C=90°,
∴∠A+∠B=90°.
∴∠AEF+∠OEB=90°.
∴∠FEO=90°.
∵OE是⊙O半径,
∴EF是⊙O的切线.
解:(2)∵∠C=90°,BC=4,AC=3,
∴AB=5.
∵BD是直径,
∴∠DEB=90°.
∴∠DEB=∠C.
∵∠B=∠B,
∴△BED∽△BCA.
∴BD AB =DE AC ,
∴3 5 =DE 3 ,DE=9 5 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询