如图,在△ABC中角平分线AD,BE,CF相交于点H,过A做AG⊥BE,垂足为G 10
4个回答
展开全部
解:
因为AD、BE、CF是角平分线
所以
∠BAD=∠BAC/2
∠ABE=∠ABC/2
∠ACF=∠ACB/2
所以
∠AHE=∠BAD+∠ABE
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180°-∠BCA)/2
=90°-∠BCA/2
=90°-∠ACF
=90°-∠GCH
因为HE⊥AC
所以∠CHG=90°-∠GCH
所以∠AHE=∠CHG
因为AD、BE、CF是角平分线
所以
∠BAD=∠BAC/2
∠ABE=∠ABC/2
∠ACF=∠ACB/2
所以
∠AHE=∠BAD+∠ABE
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180°-∠BCA)/2
=90°-∠BCA/2
=90°-∠ACF
=90°-∠GCH
因为HE⊥AC
所以∠CHG=90°-∠GCH
所以∠AHE=∠CHG
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图在哪呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有图好说
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询